Math 245C Lecture 22 Notes

Daniel Raban

May 20, 2019

1 The Poisson Summation Formula and Integrability of the Fourier Transform

This lecture was given by a guest lecturer.

1.1 The Poisson summation formula

Recall that if $E_k(x) = 2\pi i k \cdot x$, then $\{E_k : k \in \mathbb{Z}^n\}$ is an orthonormal basis of $L^2(\mathbb{T}^n)$. We have also shown the following:

Theorem 1.1. If $f \in L^1(\mathbb{R}^n)$, then the series $\sum_{k \in \mathbb{Z}^N} \tau_k f$ converges pointwise a.e. and in $L^1(\mathbb{T}^n)$ to a function Pf such that $\|Pf\|_1 \leq \|f\|_1$. Moreover, $\widehat{Pf}(k) = \widehat{f}(k)$.

We have also shown the following theorem in the \mathbb{R}^n case, but here is the form of the theorem in the \mathbb{T}^n case.

Theorem 1.2 (Hausdorff-Young inequality). Suppose that $1 \leq p \leq 2$ and q is the the conjugate exponent of p. If $f \in L^p(\mathbb{T}^n)$, then $\hat{f} \in \ell^q(\mathbb{Z}^n)$, and $\|\hat{f}\|_{\ell^q(\mathbb{Z}^n)} \leq \|f\|_{L^p(\mathbb{T}^n)}$.

Theorem 1.3 (Poisson summation formula). Suppose that $f \in C(\mathbb{R}^n)$ satisfies $|f(x)| \leq C/(1+|x|)^{n+\varepsilon}$ and $|\widehat{f}(\xi)| \leq C/(1+|\xi|)^{n+\varepsilon}$ for some $C, \varepsilon > 0$. Then

$$\sum_{k \in \mathbb{Z}} f(x+k) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) e^{2\pi i l \cdot x}$$

where both series converge absolutely and uniformly on \mathbb{T}^n . In particular,

$$\sum_{k \in \mathbb{Z}^n} f(k) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k).$$

Proof. Since $|f(x)| \leq C/(1+|x|)^{n+\varepsilon}$, for all $x \in \mathbb{T}^n$,

$$|f(x+k)| \le \frac{C}{(1+|x+k|)^{n+\varepsilon}} \le \frac{C'}{(1+|k|)^{n+\varepsilon}}.$$

Then compare

$$\sum_{k \in \mathbb{Z}} \frac{C}{(1+|k|)^{n+\varepsilon}} \sim \int_{\mathbb{R}^n} \frac{1}{(1+|x|)^{n+\varepsilon}} \, dx$$

This implies that

$$\sum_{k \in \mathbb{Z}^n} f(x+k) \stackrel{C(\mathbb{T}^n)}{=} Pf(x)$$

for all $x \in \mathbb{T}^n$.

By the previous theorem, we have $Pf \in L^1(\mathbb{T}^n)$ and $\widehat{Pf}(k) = \widehat{f}(k)$. Then $Pf \in L^2(\mathbb{T}^n)$, and since $\{E_k : k \in \mathbb{Z}^n\}$ is an orthonormal basis of $L^2(\mathbb{T}^n)$, we have

$$Pf \stackrel{L^2(\mathbb{T}^n)}{=} \sum_{k \in \mathbb{Z}^n} \widehat{Pf} e^{2\pi i k \cdot x} = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) e^{2\pi i k \cdot x}.$$

By the decay of \widehat{f} , $Pf(x) \stackrel{C(\mathbb{T}^n)}{=} \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) e^{2\pi i k \cdot x}$.

1.2 Integrability of the Fourier transform

The Fourier inversion theorem shows how to use \widehat{f} to represent f is $f, \widehat{f} \in L^1(\mathbb{R}^n)$. In \mathbb{T}^n , if $f \in L^1(\mathbb{T}^n)$ and $\widehat{f} \in \ell^1(\mathbb{Z}^n)$, then the Fourier series

$$\sum_{k\in\mathbb{Z}^n}\widehat{f}(k)e^{2\pi ik\cdot x}$$

converges absolutely and uniformly to a function g. Since $\ell^1 \subseteq \ell^2$, it follows that $f \in L^2$ and the serires converges to f in L^2 . Hence, f = g a.e. We have 2 questions:

- 1. Under what conditions is \hat{f} integrable?
- 2. How can f be recovered from \hat{f} if \hat{f} is not integrable?

Theorem 1.4. Suppose that f is periodic and absolutely continuous on \mathbb{R} , and $f' \in L^p(\mathbb{T})$ for some p > 1. Then $\hat{f} \in \ell^1(\mathbb{Z})$.

Proof. By integration by parts, $\hat{f}'(k) = 2\pi i k \hat{f}(k)$. Hence, by Hölder's inequality,

$$\sum_{k \neq 0} |\widehat{f}(k)| \leq \underbrace{\left(\sum_{k} (2\pi|k|)^{-p}\right)^{1/p}}_{=:C_p} \left[\sum_{k \neq 0} (2\pi|k\widehat{f}(k)|^q)^{1/q}\right]$$
$$= C_p \left(\sum_{k \neq 0} |\widehat{f}'(k)|^q\right)^{1/p}$$

$$\leq C_p \|\widehat{f'}\|_{\ell^q(\mathbb{Z})}.$$

Since $L^p(\mathbb{T}) \subseteq L^2(\mathbb{T})$ for p > 2, we can assume that 1 . By the Hausdorff-Young inequality,

$$\sum_{k\neq 0} |\widehat{f}(k)| \le C_p \|f'\|_{L^p(\mathbb{T})}.$$

Adding $|\hat{f}(0)|$ to both sides, we see that

$$\|\widehat{f}\|_{\ell^1(\mathbb{Z})} < \infty.$$

Lemma 1.1. If $f, g \in L^2(\mathbb{R}^n)$, then $(\widehat{fg})^{\vee} = f * g$.

Proof. By assumption, we know that $\widehat{f}, \widehat{g} \in L^2(\mathbb{R}^n)$. Then $\widehat{fg} \in L^1(\mathbb{R}^n)$. So $(\widehat{fg})^{\vee}$ makes sense. So for $x \in \mathbb{R}^n$, define $h(y) = \overline{g(x-y)}$. Then $\widehat{h}(\xi) = \overline{\widehat{g}(\xi)}e^{-2\pi i\xi \cdot x}$. Then

$$f * g(x) = \int_{\mathbb{R}^n} f\overline{h} = \int \widehat{f}\overline{\widehat{h}} = \int \widehat{f}(\xi)\widehat{g}(\xi e^{2\pi i\xi \cdot x} d\xi = (\widehat{f}\widehat{g})^{\vee}.$$